Rate-equation approach to irreversible island growth with cluster diffusion.

نویسندگان

  • Bradley C Hubartt
  • Y A Kryukov
  • Jacques G Amar
چکیده

A self-consistent rate-equation (RE) approach to irreversible island growth and nucleation is presented which takes into account cluster mobility. As a first application, we consider the irreversible growth of compact islands on a two-dimensional surface in the presence of monomer deposition (with rate F) and monomer diffusion (with rate D(1)) while the mobility of an island of size s is assumed to satisfy D(s)=D(1)s(-μ) where μ>0. Results are obtained for the dependence of the island-density and island-size distribution (ISD) on the parameters D(1)/F, μ, and coverage θ. For all values of μ, we find excellent agreement between our self-consistent RE results and simulation results for the island and monomer densities, up to and even somewhat beyond the coverage corresponding to the peak island density. We also find good agreement between our self-consistent RE and simulation results for the portion of the ISD corresponding to island sizes less than the average island-size S. However, for larger island sizes the effects of correlations become important and as a result the agreement is not as good. Using our self-consistent RE approach we also demonstrate that the discrepancies between simulations and recent mean-field predictions for the exponent τ(μ) describing the power-law size dependence of the ISD for μ<1 can be explained almost entirely by geometric effects. Our results are also compared with those obtained using a simpler mean-field Smoluchowski approach. In general, we find that, except for the case μ=1/2 (for which the island and monomer densities are reasonably well predicted), such an approach leads to results which are in poor agreement with the simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper critical dimension for irreversible cluster nucleation and growth in the point-island regime.

We compare the results of kinetic Monte Carlo (KMC) simulations of a point-island model of irreversible nucleation and growth in four dimensions (4D) with the corresponding mean-field (MF) rate-equation predictions for the monomer density, island density, island-size distribution (ISD), capture-number distribution (CND), and capture-zone distribution (CZD), in order to determine the critical di...

متن کامل

Upper Critical Dimension for Irreversible Cluster Nucleation and Growth

Abstract We compare the results of kinetic Monte Carlo (KMC) simulations of a point-island model of irreversible nucleation and growth in four-dimensions with the corresponding mean-field (MF) rate equation predictions for the monomer density, island density, island-size distribution (ISD), and capture number distribution (CND) in order to determine the critical dimension dc for meanfield behav...

متن کامل

CAPTURE-NUMBERS AND ISLAND SIZE-DISTRIBUTIONS IN IRREVERSIBLE HOMOEPITAXIAL GROWTH A Rate-Equation Approach

A fully self-consistent rate-equation approach to irreversible submonolayer growth is presented. This approach explicitly takes into account the correlation between the size of an island and the corresponding average capture zone. It is shown that this leads to capture numbers which depend explicitely on the island-size, and excellent agreement with experimental and Monte Carlo results is found...

متن کامل

Analysis of Island Dynamics in Epitaxial Growth of Thin Films

This work is concerned with analysis and refinement for a class of island dynamics models for epitaxial growth of crystalline thin films. An island dynamics model consists of evolution equations for step edges (or island boundaries), coupled to a diffusion equation for the adatom density, on an epitaxial surface. The island dynamics model with irreversible aggregation is confirmed to be mathema...

متن کامل

Rate-equation approach to island size distributions and capture numbers in submonolayer irreversible growth

We present a quantitative rate-equation approach to irreversible submonolayer growth on a two-dimensional substrate. Our method explicitly takes into account the existence of a denuded ~‘‘capture’’! zone around every island and the correlations between the size of an island and the corresponding average capture zone. The evolution of the capture-zone distributions is described by a set of Voron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011